Bead Strings ## Benefits Different sizes of bead strings can support children at different stages of addition and subtraction. Bead strings to 10 are very effective at helping children to investigate number bonds up to 10. They can help children to systematically find all the number bonds to 10 by moving one bead at a time to see the different numbers they have partitioned the 10 beads into e.g. 2 + 8 = 10, move one bead, 3 + 7 = 10. Bead strings to 20 work in a similar way but they also group the beads in fives. Children can apply their knowledge of number bonds to 10 and see the links to number bonds to 20. Bead strings to 100 are grouped in tens and can support children in number bonds to 100 as well as helping when adding by making ten. Bead strings can show a link to adding to the next 10 on number lines which supports a mental method of addition. #### **Number Tracks** $$5 + 3 = 8$$ | | | | | | Y | Y | 1 | | | |---|---|---|---|---|---|---|---|---|----| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ഗ | 10 | $$10 - 4 = 6$$ $$8 + 7 = 15$$ # **Benefits** Number tracks are useful to support children in their understanding of augmentation and reduction. When adding, children count on to find the total of the numbers. On a number track, children can place a counter on the starting number and then count on to find the total. When subtracting, children count back to find their answer. They start at the minuend and then take away the subtrahend to find the difference between the numbers. Number tracks can work well alongside ten frames and bead strings which can also model counting on or counting back. Playing board games can help children to become familiar with the idea of counting on using a number track before they move on to number lines. ### Number Lines (labelled) ## Benefits Labelled number lines support children in their understanding of addition and subtraction as augmentation and reduction. Children can start by counting on or back in ones, up or down the number line. This skill links directly to the use of the number track. Progressing further, children can add numbers by jumping to the nearest 10 and then jumping to the total. This links to the making 10 method which can also be supported by ten frames. The smaller number is partitioned to support children to make a number bond to 10 and to then add on the remaining part. Children can subtract numbers by firstly jumping to the nearest 10. Again, this can be supported by ten frames so children can see how they partition the smaller number into the two separate jumps. ### Number Lines (blank) $$35 + 37 = 72$$ $$35 + 37 = 72$$ $$72 - 35 = 37$$ # **Benefits** Blank number lines provide children with a structure to add and subtract numbers in smaller parts. Developing from labelled number lines, children can add by jumping to the nearest 10 and then adding the rest of the number either as a whole or by adding the tens and ones separately. Children may also count back on a number line to subtract, again by jumping to the nearest 10 and then subtracting the rest of the number. Blank number lines can also be used effectively to help children subtract by finding the difference between numbers. This can be done by starting with the smaller number and then counting on to the larger number. They then add up the parts they have counted on to find the difference between the numbers. #### **Straws** # **Benefits** Straws are an effective way to support children in their understanding of exchange when adding and subtracting 2-digit numbers. Children can be introduced to the idea of bundling groups of ten when adding smaller numbers and when representing 2-digit numbers. Use elastic bands or other ties to make bundles of ten straws. When adding numbers, children bundle a group of 10 straws to represent the exchange from 10 ones to 1 ten. They then add the individual straws (ones) and bundles of straws (tens) to find the total. When subtracting numbers, children unbundle a group of 10 straws to represent the exchange from 1 ten to 10 ones. Straws provide a good stepping stone to adding and subtracting with Base 10/Dienes.